
AD-771 748

A LOGICAL DESIGN AUTOMATION UTILITY

Chin-Chi Kao, et al

Washington University

r4 r
Prepared for:

Advanced Research Projects Agency
Department of Defense
Public Health Services

July 1970

DISTRIBUTED BY:

Knn
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

BEST
AVAILABLE COPY

/~.

I InrlaMifteH
Security Classification ^/) yy/vVf^

DOCUMENT CONTROL DATA -R&D
(Sacurtry clmttlllcmtlon ol till; body ol mbtltmel mnd Indtm. ig umolmtlen muH bm anfnd whtn f/i« ovutmll npott li clmaulUudj

I. ORI6INATIN6 ACTIVITY (Colpotmf muthot)

Computer Systems Laboratory
Washington University
St. Louis, Missouri

M. RCPORT SECURITY CLASSIFICATION

Unclassified
ab. CROUP

I. REPORT TITLE

A Logical Design Automation Utility

4. DESCRIPTIVE NOtt.% (Typ* ol npott and faclutln da»**)

Interim
8. AUTHORISI (Fltat MOM, rnlddl* Initial. Ia*t nama)

Chin-chi Kao and Ying Huang Chuang

S. REPORT DATE
July, 1970

7«. TOTAL NO. OP PACES

%^
roK*! t

7b. NO. OF NEFS
22

»a. CONTRACT OR CRANT NO. S«. ORICINATOR'S REPORT NUMTBERO)

(1) DOD(ARPA) Contract SD-302
b. PRÖJtc¥tttt.DRFR) Grant No. 00396

(1) ARPA Project Code No. 5880
«• Order No. 655

Technical Report No. 19

sb. OTHER REPORT NOO» (Any ethar nuaibara Mai may ba aaaljnarf
Ihl* raporl)

10. DISTRIBUTION STATEMENT

Distribution of this document is unlimited

It. SUPPLEMENTARY NOTES 12. SPONSORINC MILITARY ACTIVITY

ARPA - Information Processing Techniques,
Washington DC. NIH, Div. of Research

is.

Computer oriented algorithms for several laborious computations frequently encountered in
switching theory and logic design are presented. They are algorithms for the computation of
designation numbers, functional composition, detection of relations between Boolean functions, symbolic
expansion of Boolean expressions, and approximate minimization of Boolean functions. These
algorithms are useful in the construction of man/machine interactive systems for logic design
automation. Machine independence and modularity are emphasized in the development of tiiese
algorithms. They have been programmed on the LINC computer.

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U 5 Depurlmcul o(Commerce
Springfield VA 22151

DD row
I NOV •• 1473

f^,/
Security CUssincaUon

Unclassified
Security CUttlfication

KEV WORDS
ROLE

LINK C

ROLE

Logic Design Automation
Switching Theory
Computer Oriented Algorithms
Designation Numbers
Reverse Polish Strings
Function Equivalence
Logic Minimization
Symbolic Expansion

ij>
Security Claealflcatlon

A LOGICAL DESIGN AUTOMATION UTILITY

Chin-chi Kao and Ying Huang Chuang

TECHNICAL REPORT NO. 19

July, 1970

Computer Systems Laboratory

Washington University

St. Louis, Missouri

This work was supported in part by the Advanced Research Projects Agency of the Department
of Defense under Contract SD-302 an.i by the Division of Research Facilities and Resources of the
National Institute of Health under Grant RR-00396.

\<Ls S

I
I
r
i

i
i

i
i

i
i

i

ABSTRACT

Computer oriented algoritlims lor several laborious computations

I frequently encountered In switeliing theory and logie design are

presented. They are algorithms tor the computation of designation

number», functional composition, detection of relations between

Boolean functions, symbolic expansion of Boolean expressions, and

approximate minimi/atun of Boolean functions. These algorithms arc

useful in the construction of man/machine interactive systems tor

logic design automation. Machine independence and modularity are

emphasized in the development of these algorithms. They have been

programmed on the L!N(computer.

•III-

TABLE OF CONTENTS

No.

1. Introduction

2. Designat inn Numbers

2.1 Introduction

Page

 1

 2

 2
2.2 Table of Combinations and Desi^iation Numbers 2

2J Computing »lie Designation Number of a Boolean Function 3

2J.I Boolean Hxpression in Infix Notations 4

2J.2 Converting Boolean Expression into Early Reverse Polish Fown 5

2.4 Program Implementation 6

2.4.1 The Program to Obtain an tarly Reverse Polish String f

2.4.2 fhe Program to Obtain a Designation Number from a Reverse Polish String 6

2.5 Composite Punctions 7

2.<i Remark _

3, Functional Relations „

.^.i Introduction q

-^.2 lii|ualitv and Implication o

3.3 Functional Fciuivalencc o

^.4 Comparing Boolean functions with Don't Cares JQ

3.5 txample .„

4. Boolean Fxpression Minimization p

4.1 Introduction .-,

4.2 Cubical Complexes p

4.2.1 Star-Product (Consensus Operation) j3

4.2.2 Sharp Operation (# operation) 15

4.3 Prime Implicanls of a Boolean Function I6

4.3.1 0«iine-McCluskey Tabular Method 17

4.3.2 Iterative Consensus Method J7

4.3.3 Cube Fnlargement jg

4.4 Approximate Minimum Cover I9

4.5 Program Implementation -,,

4.6 Example ,,.

4.7 Conclusion -,-,

5. Computer Expansion of Boolean Expressions 24

5.1 Introduction 24

5.2 Algorithms for Applying DcMorgan's Theorems 24

5.3 An Algorithm for Applying Associative Laws and Distributive Laws 26

TABLE OF CONTENTS

(cnntinued)

No, page

5.4 Program Implementation 37

5.5 Conclusion 37

(). Conclusion 39

7. Appendices 41

7.1 The Flow Chart tor Transformlns a Boolean Expression Into harly Reverse

Polish Form 42

7.2 The Flow Chan for Boolean Expression Minimization 46

7.3 The How Chan for Boolean Expression Expansion 52

H. Bibliogiaphv 52

I
I
I
I
I
I

LIST OF TABLES

No.
Page

I. The Table of Combinations of ilic Puoctlot) P(AflC) = AB + C' ^

-• Coordinate "-prodact
 14

3, Coordinate #-operation a « b 1 ' 15

I
I
I
I
r

-vi-

LiST OF FIGURES

No.
Page

1. The Rules of the Designation Number in Logic Design 7

2. A Composite Circuit Composed of Two Stages and Three Components 8

3. Illustrations for ♦-product of Cubes ..

4. Arrangement of Cubes for Obtaining an Approximate Minimum Cover 20
5. Stack Structure

6. Changes of Stack Contents and Pointers Illustrating the + operation and * operation 30

(a) Preceding the + Operation or the * Operation 30

(b) After the + Operation 1|

(c) After Step I of the • Operation 32

(d) After Step 2 of the * Operation „

7. Three Key Steps in the Process of Applying Algorithm 3 to an Expression 34

8. A Computer Aided Logic Design System m

\ LOGICAL DESIGN AUTOMATION UTILITY

I INTRODUCTION

Due to llk'ir grsal (.nininiiatKHKil spci-d ;md MIIUII.UKMI .ihihly. iliuil;il ompulL-is me being used in desij-mnp

.md anaJyzif^i new &mfm*n, ;iiid Mt a&ßmim is hteamtei wOm. Hrcucr1 hat divided iho pinblems m dcMun

■aiu.iiuiiuMi ol digilal annpuk-is nil., ilin-o nuin mm: l'uv..nsiiiKli..ii JIMIVMS. lundwjro dcsij-ii und

implciiKMiiaiK.i!. jnd M.tiw;iiv fßmmatkm. fmommetim »miym d^Mis pniiumly wnh ihc use af&mä purpose

syttem simuteofi m tiymj; to deiermme au opiniKil lunelhMKil eniitii;iir;iii..n lor i new eompuler sysiem2. MJIII

problems under li.irdw.iie deMgn nielude julonuilie logie generulum. Hm.kMii logie niinimi/;ilion. and logic

Mmul.iiionv Problems m pliyMc.il implemenlalion melude primed eneun l.iyoui. ihe aNSignmenl ol eireuil cards

to backboauK. the pUemenl ot circun cards on backboards, and (he mierconneciion ol terminals, eic. Typical

problems in auioinalic soliware generation include the use ol a meta-compiler as an aid in generating a new

compiler, and automatic generation ot test loutmes toi detection and diagnosis of component failures-''4.

In general, tlie usage ot digital computers m hardware design and implementation has been primarily

concerned with the generation and mainlenance ol liles loi recording logic network structures, placement of logic

cards, development ol wiring lists, and other manulaciurmg oriented data5. Such programs do not alter the

engineer's logic design, bul ,;iereiy check ris validity under certain manulacluring constraints and develop

appropriate labncation intormalion. Although great interest has been expressed in developing computer

algorithms tor auloniating tasks ot logic design, only the leasibility has been demonstrated6. With lire increasing

complexrly ol digital systems and resulting need lor greater control and accuracy in the design phase Irom

architecture to implementation, it is crucial thai eritcient algorithms lor automated logic design be developed and

implemented.

The purpose ol tins research is to develop some computer-oriemed algorithms for the manipulation of

switching functions in logic design. Although some computer algorithms have been developed to manipulate

switching RmctoM6'', most of these are for ; vcial purposes and dependent on the particular systems and

languages used by the developers. Hence the algorithms arc not easily applicable without having the same types

ol facilities, in this development, however, particular emphasis has been put on modularity and machine

mdeperu ence. it is certain that the users can easily program these algorithms on their own computers.

2 DESK.NATION NUMBtRS

2 I INTRODLCTION

Bot*», Avh,., ..„, Iv ..pplK.J „, J..,,,!,, „Lnmnslnp bmm* «{MM ..ml „u.put wMn „, ., vuv/./;,^

^'„:„.(. I,, »ri«* ., Z;,.,./,^ ,-.V/TOS/.., .k-.o.h,,,. ih. mpuLnuip.M (*fe , ., .Wlldllll>; ,,„„„. ^^^ ^

P'",lk''^ »«»« '^'ls ,!,.,. «« ,„ ,vnn.,l m.,m H,,,,!,,,, oxpu.ss,„ns «Ind, «M d^ubc ,hc .„„o s« „d,,,,.

r«IWtk»n. S.O.MJK. ,1,. .,|„|„,IU .„.„„pul.,!,,.,, ,,t ll,,,,!...,, ^p,,^...,. ,„„ ,,„K ,^uncs xmUuMt skill ...d

""^"l- " ["^Ua w,"l •' ^«^ >««*««#«.., | ,,„, ..i^.in... hui ,s duhaih to be mmtomui.

Fhc M.IUH.M, to th. !„>, proMmn n ., nprnm»*** «InJ. ü mm,,,, i,,, , .„VOM tun.u.,,, WWt Hw v.lm

to ttK iecuml p.ublan ü i «»«« .„K! vmmm* ,cV^uuu^ fm*k fm IUPK-.I eompm , A

r«t»««,«) " wftkh OMI M^KV Ihosc wo FaM«M HWiUMOwi} is the dos,,.,,;,!,,.,: „.inihc^.

I ho role pbytd In dos,,ILlII,M, MM** „, tope inip proem CM IM «pressed m .he following:

Iniiul
ctrcuii
di.ii;i.im

Verbal
sl.itemein nt

pruhletn

I ai.il lesiill •
MI terms of
desijmuliun
numbers

BiiDle.iii
functHins

Di'sijüijliu;;

mimbeis

/ /

IUIILIKIT:

l.ible

I IM.II result
in Uiiolejii
expresMuiis

iinal
eireuil
di.ijirjm

NLiiiipiiLitinii ot
iX'sijuuilion

numbers

The Roles of the Designation number in Logit Design

Figure I

In this „.ure. the double-lmed .rrnws reter to problems th.i mvolve „nlv Moole.m .Igebra und the computaf,:-

tiKMhuds; the sm^le-lmed mom refer to proeedmes uM,<|ue to the dunud computer ciremt problem.

2 2 TABLE OF COMBINATIONS AND DESIGNATION NUMBERS

Input-outpu. rcLmon „t i Boole.,, .unct,,,,, e.,,, be expressed by us„,u . table of eomb.nattons winch ,s a

table hstm, values of the tunetm,, ,.,r all („ssible combmatmns of values of ,nput varubles. For „.stance, the

I .3.

I
I
I
I
I
I
I

switching tunctiun

KAIK) = AUK
II.IN ilk' i.ihk' di combinatiufls uven in Lihk- I.

A 1 (AIM

0 II u II 1

1 (I 0 1 (1

1 0 1 0 1

;. 0 1 1 0

4 1 0 (1 1

s l 0 I 0

(> 1 1 0 1

7 1 1 1 1

Table 1
The Table of Combinations of the Function F(ABC) = AB+C'

In Hie table, input cuinhmations are Uted according to the value of their BCD (binary coded decimal). When this

lutural ordei is underMuod. the last column (i.e.. the column of function values) only is sufficient to describe

tl:c Uinciiön. This column of binary digits taken as a binary number is called the designation number of the
Boolean lunction.

Similarly the column of binary digits under an input variable in the table is called Hie designation number of

the input variable. Thus the designation number of the input variable C is 01010101 and that of the function F

is IÜ10IÜ11. For a lunction of n variables, the designation numbers of the function and input variables have 2"

digits because there are 2" combinations of the values of input variables.

V one changes the order of input variables, the designation numbers of input variables have to be changed,

mi the designation number of the function changes consequently. Therefore, when we talk about the

designation number of a Boolean function, the sequence of input variables must be clearly specified. With the

order of variables specified, the designation number is a unique and compact representation of a Boolean
function.

I

2 3 COMPUTING THE DESIGNATION NUMBER OF A BOOLEAN FUNCTION

The designation number of a function can be computed by substituting designation numbers of input variables

Into the Boolean expression describing the function and then perform logical operations bit by bit. The order in

-4-

which logical operations are performed is specified by the explicit and implicit hierarchy in the syntax of the

expression. For manual computation, this order is not difficult to see. For machine computation, however, it is

much more efficient if the order of logical operation is the order of appearance of operator symbols in the

expression. Therefore, the first step in this computation is to transform the given Boolean expression - generally
in infix notation - into a reverse Polish form.

2.3.1 Boolean Expression in Infix Notations

A Boolean expression in infix notation is defined ucursively as follows:

1. Any alphabetic letter is a Boolean expression.

2. It A and B are Boolean expres^ons, then M are (A+B) and (AB).

3. It A is a Boolean expression, then so is A'.

Only symbol strings satisfying the above rules are Boolean expressions in infix notation and no others A+B AB

and A' mean A "OR" B, A "AND'" B. and A "NOT" respectively. Parenthesis pairs can be omitted if their

omission does not gin rise to ambiguity. Thus the symbolic convention chosen here is the one most commonly
used.

Consider the Boolean expression in infix notation

F(ABCDEHKLMN) = (A + CD + C(D+E)'(M+N) + H + K)'L

To compute the designation number of this function, one can perform the logical operations in the following
order:*

LCD

2. A + CD

3. D + E

4. (D + E)'

5. C ■ (D + E)'

6. M + N

7. C(D + E)'- (M + N)

8. (A + CD) + C(D + E) ' (M + N)

9. (A + CD + C(D + E)'(M + N)) + H

io. X = (A + CD + C(D + E)' (M + N) + H) + K
11. X'

12. X'L

»This order is ,he one imp.ied in .he reverse Potish s.ring „b.ained using .he atgori.hn, of .he nex. sub-

sec.ion.

-5-

Unless the expression is in sum-ol-producls form or produel-of-sums Ibrm (namely, normal forms), the

procedure of liiiding the order of logical operation is difficult. Since (he expression given is generally not in a

normal form, either transtormalioii to a normal form or to a reverse Polish string is required. A normal form

transformation, namely expansion of Boolean expressions, will be discussed in Chapter 5.

The algorithm to transform a Boolean expression into a reverse Polish form is a slight modification of the well

known algorithm which transforms an ordinary irithmetic expression into its reveise Polish form9. This algorithm

is discussed in the following sub.vction.

2.3.2 Converting Boolean Expression into Early Reverse Polish Form

A Boolean expression in early reverse Polish form (ERP) is defined recursively as follows;

1. Any alphabetic letter is an l:RP form.

2. If A and B are bRP forms, iU< u so are AB+, AB', and A'.

3. There are no others.

The use of the reverse Polish notation to represent a Boolean expression has the following advantages:

1. The operators appear in the order in which the computation is carried out.

2. It eliminates the necessity of parentheses.

The early reverse Polish notation rather thai, late reverse Polish is adopted, because the mechanization of

transforming to the ERP form requires smaller push-down store.

The essential rules of converting Boolean expression into ERP notation are as follows:

1. If Sj is a variable, it is transcribed directly to the output.

2. If s. is a left parenthesis following a variable, a "NOT" operator, or a right parenthesis, first a

logical "AND" sign "." and then a left parenthesis are put to the push-down list N.

3. If s. is an operator, the top entry (called E) of the list N is examined. If E is an operator not

weaker than s. in the operator precedence given in the list below, then E is transcribed to the

output. The process repeats for each top entry of the push-down list N until it is empty, or the

lop entry is, a left parenthesis or an operator weaker than s.. When this happens s. is transcribed

to the push-down list N.

The List of Operator Precedence

1. ' (NOT)

2. • (AND)

3. + (OR)

4. © (Exclusive-OR)

4, If si is a rigln parenthesis, successive top entries ;ire transcribed from the list N to the output

until .1 let'i parenthesis is reached, which is then deleted.

5, If a variable or a completuented variable is following a variable, a "NOT ' »perator, or a right

parenthesis, then a "," is put In the output.

6, Alter the last symbol of the Boolean expression has been dealt with, the'remaining entries in

the list N are transcribed to the output.

In general, the symbols of the Boolean expression are examined one by one from left to right. Variable

symbols are transcribed as soon as they are encountered. Operator symbols are held in a push-down tore N until

Conditions foi theii transcription are satisfied. The process is more clearly described in Appendix 8.1.

2.4 PROGRAM IMPLEMENTATION

2.4.1 The Program to Obtain an Early Reverse Polish String

Ihe algorithm tor changing an Boolean expression to an early reverse Polish string is shown in Appendix S.I.

An operator ende and its hierarchy number are stored alongside in the push-down list N. The hierarchy

number foi the unary operator "NOT" is 14. while those lor binary operators are "ANU" 12, "OR" 10, and

"Exclusive-OR" 8. The hierarchy numbers lor the right and the left parentheses are 04 and Of» respectively.

To make sure that the input Boolean expression is well-formed, the following rule is used to check the reverse

Polish string obtained. This is because the input Boolean expression is well-formed if and only if the reverse

Polish string obtained is also well-formed. Lach symbol in the string is given a weight. The weights of binary

operators "AND," "OR." and "Exclusive-OR" are I; thai of unary operator "NOT" is 0: and that of any

specified Variable is I. Lach unspecified symbol is arbitrary given a weight of 100. Then the reverse Polish

string is well-formed il and only il the sum of the weight of all symbols in every propertailol the string is

nonnegative, and the sum ol the weight ol all symbols in the whole string is I. A tail of a string w = xy is y,

and y is propel il x is rmi a null siring.

2.4.2 The program to Obtain ; Designation Number from a Reverse Polish String

In performing •AND." "OR," "NOT." and "Lxclusrve-OK" operations, each variable of Ihe string is

represented by a vector (designaiion number). The length of the vectors depends on the number of variables of

the function. Lach vector ol a k-vanahle function have 2k binary bits. Though each word of the LINC has 12

bus. only the upper 8 bits are used. For byte oriented machines, there will be no memory waste. We could

construct and store these vectors in their full length, and use them in the computation of desrgnation numbers.

However, since these vectors are generally very long, it would be very uneconomical both m time atrd irr memory

space. Therefore, we divide each vector into 8-bit (i.e., I-word) sections, and calculate successive sections ol these

vectors in each iteration ol the process. This rs possible because bit patterns of the vectors change in a regular

way. The tirst. second, arrd third variable vectors repeal with the pattern of 0IÜI0I0I, 001 1001 1 and OOUOI I I I

I
I
I
I
I
I
!

I

i

I
I
I
r

respectively. Vectors from the fourth variable and on .ire combinatJons of 0 (00000000) and f (11111111) in a
simple ;iiid regular way.

For a Boolean function of n variables, the computation of desolation number is divided into m = 2"-3

iterations, In the first iteration, the reverse Polish string is scanned from the left end to the right end. and each

lime an operator is met an operation is executed using the first words of variable vectors only. Similarly, in the

second iteration, operations are executed using the second words of variable vectors only. The whole

computation ends at the end of the m-th iteration. In each iteration, the string is scanned from the beginning to

the end. and the section of each variable vector calculated as follows.

A register is provided for iteration count and for indicating whether the X-bit sections of the fourth to

fifteenth variable vector; in the current iteration is (1 or T. Bit 0 through bit I I indicate the bit patterns of the

fourth through the nfteenth variable vectors respectively. Thus a 0 (or I) in the i-lh bit indicates that the i+3rd

variable vector is 0 (or T) in the current iteration. The content of the register is set to 000000000000 in the first

iteration, and indexed by I after each iteration, For example, in the tenth iteration the content of the register is

000000001001, which indicates thai the vectors of the fourth and the seventh variables are T's, while those of

other variables except the first, second, and the third are (Ts.

This approach has an additional advantage of not requiring calculation of variable vectors each time the
number of variable is changed.

2 5 COMPOSITE FUNCTIONS

Most switching circuits are composed of several stages. The inputs to higher stages are not all pure variables

(i.e.. primary input variables»; some of then, a: 'he outputs of previous stages. The block diagram of Figure 2

shows a circuit composed of t*o stages nnu .Irec component circuits f,, fj. and f,. Tire inputs of circuits f

and l2 are pure variables A. B, and C, and their outputs are labeled f and I respectively.

Therefore. f) = f^A.IU'l /j 5 ^

and f2 = f:(A.B.n {252)

The circuit f, has inputs f,. fJt D. h. and output labeled F,

F«F(fj.fa,D. E) (2.5.3)

is the composite function, because f,. f, are not pure variables: F is a function of pure variables A. B. C, D. and

t because f,. f2 are lunctions of A. B. and C, To obtain the designation number of F(A.B.C,D.E) we substitute

eiiuations (2.5.1» and (2.5.2) into ecpiution (2.S.3) first, and then calculate the designation number of the

resulting expression. A program is developed for this substitution.

2.6 REMARK

By translating a Boolean expression into an early reverse Polish string, the computation of the designation

number for any Boolean expression containing "AND," "OR." "NOT," and "txclusivc-OR- operators becomes

-8.

A B (A B C

A Composite Circuit Composed of Two Stages
and Three Components

Figure 2

simple. However, because the pma-durc to compute the designation number of a function given in

Mini-nipmdiiLis form is also pretty Stralght forward, we C;III expand the Boolean expression Into a

sum-of-produets form instead of translating into a reverse Polish form. For Boolean expressions containing the

"Excluslve-OR" operator, however, the normal form expansion becomes very complicated. Therefore, the

algorithm based on reverse Polish translation is a much reasonable approach.

-9-

3. FUNCTIONAL RELATIONS

3.1 INTRODUCTION

Designation numbers can be used eft'ectively to find relations between functions. In this chapter, we shall

discuss how designation numbers can be used to achieve this.

Many ditferent expressions can represent the same function. But given a variable sequence, all different

expressions of the same function have a unique designation number. Equality of Boolean expressions can.

therefore, be detected by comparing their designation numbers.

Two different functions have different designation numbers based on the same variable sequence. Very often,

however, different functions are considered to be equivalent, if their designation numbers can be made equal by

lixing the variable sequence of one function while changing the variable sequence of the other function in all

possible ways. For example, the functions (with the variable sequence shown inside the parenthesis pair)

F(ABCD) = A + B

G(ABCD)"C + D

are different. Designation numbers of F and G are ÜÜUÜ1 111 I I I 11 I 1 I and 01 1101 II Uli 101 1 I respectively.

These two functions are equivalent, however, because the designation number of F(ABCD) is identical to the

designation number of G(CDAB). Detection of functional e.|uivalence is impoilant in logic design, because

equivalent functions can be realized by identical networks*

Other functional relations such as the implication relation can also be delected by comparing designation

numbers.

3.2 EQUAJJTY AND IMPLICATION

Equal functions have identical designation numbers based on the same variable sequence. Therefore, we can

easily delect equality of two functions by comparing to see if their designation numbers match.

The implication relation between two functions is also delectable by comparison of their designalu n numbers.

F implies Q if and only if in all bit positions in which F has a 1, G also has a I. The detection of implication

relation is useful in residue test10.

3.3 FUNCTIONAL EQUIVALENCE

Although detection of funclional equivalence is very important in logic design, there is still no efficient

detection algorithm available at present. Before a more efficient algorithm is available, the best we can do to

detect functional equivalence is by comparing designation numbers with the variable sequence of one of the

•Funclional equivalence obtainable by complementing variables is not considered here.

-lü-

functions varying in all possible ways, Tins exhaustive approach becomes feasible only with the aid ..thigh speed

digital computers,

The essential par. of functional equivalence detection is. therefore, the algorithm of computing all possible

permutations of a Variable sequence. The method developed by K. Haradü1 ' is adopted here. This method

generates all Hamiltonian circuits of a non-oriented complete graph. The variables of a Boolean function are

considered as the vertices of the graph, and each llamiltoman circmt corresponds to a variable sequence. All

permutations of variables can be obtained by rotating variable sequences corresponding to all Hamiltonian

circuits. For a graph with n vertices, there are Xl^üi Mannl.oman Circuits. The Xfcjüi variable sequences

corresponding h. these llamiltoman circuits are then rotated n times clockwise and n fmes counterclockwise to

obtain ISy-L (n+n) = n! permutations without duplication or omission.

Suppose functions }• and G have the same number of variables and their equivalence is to be delected. The

designation number of F (with a lixed variable sequence» is compare.' with that of G (with the same variable

sequence as that of F initially). II their designation numbers are different, a new variable sequence and the

corresponding designation number are computed for G, The new design-ion number ol G is then compared with

the designation number of F. This procedure continues until the designation number of F is equal to a

designation number of G, In which case F and (, are equivalent; or all designahon numbers of G corresponding

to all possible permutations of its variable sequence have been compared, in which case F and G are not
equivalent.

-V4 COMPARING BOOLEAN FUNCTIONS WITH DON T CARES

A Boolean function may have dotü care conditions. These don't care cond.lions can he specified in the form

of a Boolean function called don't care function having the same variables as the given Boolean function. A

func'uon with don't care conditions, therefore, consists of two component functions: a care function which

specifies input combinations for which the function has value I. and a Jo,,; care/Unction which specifies don't

care input combinations. Denole the care function and the don't care function of a function F by F and Fd

respectively. To compare F and G for equality, implicat.on or equ.valence. we compute designation numbers of

Fc. Fd. Gc. and Cd separately. Designation numbers of F(1 and Gd are added together (component-wise ORng)

o form a mask. We then compare designation numbers of F; and Gc ignoring bit positions in which the mask t

has I

.V5 EXAMPLE

Consider the two functions F and (, with F^ \H(!>, = AC + BD + CD. G (ABCD) « AB + AC + B'CD +

BC'D,Fd(AB(D, = A'BCD'+AB'C'D,and (..(ABC 1), = A'BC. Denote the des^nation number of a function by

adding a # sign before the function symbol. For instance, the designation number of F (ABCD) is denoted bv

«F (ABCD) Then. C

-Ft(ABCD> = ()()010IOI 001 10ill.

#Fl.(ABCD) = 00000010 01000000.

I
I
I

-II-

I
1
!

I
I
I
I

^C; (AIU'D) = 00010100 001 I II II.

#Gd(ABCD) = 0000001 I 00000000,

The mask is 00000011 01000000.

j By comparing #Fc(ABCD) and #GC(ABCD) wilh mask bits (i.e., bit positions in which the mask has a 1)

ignored, we see thai F and (j are not equal hut F implies (i.

When the variable sequence old is changed to AOBC, the designation numbers ofG and (i are

#G (ADJK'I = 00000110 011101 11,
G

#Gd(ADBC) ■ oooioooi oooooooo.

The mask, which is the bn-wise OKinj; of #Fd(AflCD) and #Gd(ADBC), is 0001001 I OIOOOOOO. Under this new

mask. =1 (ABCD) = =(1 (ADSC). Therefore, F and G are equivalent.

-12-

e

4. BOOLEAN EXPRESSION MtNIMIZATION

4.1 INTRODUCTION

The design of a combinational logical network generally involves .wu steps. In the first step the desired

relation between the .„put and output s.gnals is stipulated, from which a Boolean expression which represents

the network function is derived. There are. In general, numerous different Boole., expressions which are

equ.valent in that they all represent the same network function, Therefore, in the second step, calculation may

be performed on the expression obtained in the first step to obtain the "minimum" equivalent expression. This
second step is termed the minimization or the simplification process.

An equivalent expression is a m.mmal expression if one of the following three mimmah.y criteria is satisfied.

1. The minimal expression is the expression with fewest literals.

2. The minimal expression is the expression with minimal sum of literals and terms.

3. The minimal expression is the expression with tlv> fewest terms, provided another

expression does not have the same number of terms and fewer literals.

Ou.ne'2 showed that under any such criterion, the minimal expression is a disjunction of certain products called

prme implua,m. The minimization process, therefore, involves first obtaining the se. of prime implicants and

then choosing the best irredundant set of prime implicants based on the minimality criterion used

The process of obtaining the absolute minimum expression is a complex and time consuming computation

process, mainly because for some expressions the number of prime implicants is very big16. I. is quite often the

case that the hardware cost saved by finding a minimum circuit is far less than the cost of finding that circuit

and a nearly minimum, not the absolute minimum circuit, which is rapidly found is the most economical Thus

our primary concern is to f.nd an algorithm for obtaining an approximate minimum form with emphasis on the
speed of computation and memory requirement.

The techniques of mmimizing Boolean expression can be classified as map methods'4, tabular methods'2- '*

and cubical complex methods'^ "-. Map methods are satisfactory for functions of no more than six variables

The tabular method and the cubical complex method are more suitable to machine computation. Moreover the

usefulness of these two methods arc no, limited by the number of variables. The approximate minimum method

winch I. the main subject of this chapter stems from the cubical complex method. Therefore, this chapter will
begin with a brief discussion of cubical complexes.

4.2 CUBICAL COMPLEXES

A geometric representation of a Boolean function is obtained by mapping a Boolean function of n-variables

onto the n-dimensional unit cube. We set up a coordinate system on the n-cube with coordinates (e e -- e)

-13

where e. - 0, I. We then nuke the correspondence between the fundamental product x/'x ^ -- x ^ and a

vertex (e,. e2, --, en), where x.ei • x. if e(- 1, and x.ei " x.' if e. =0.

Let Z, represent the space of Boolean elements 0 and I. Then the space of n-tupies of 0's and l's is the

Cartesian product Z2xZ,x-.xZ2 of n Z/s. This Cartesian product, representing the n-cube, is designated bv

Z/. Then a Boolean function is a mapping of Z/ into Z2, Z2"-Z2. The elements of Z/ (i.e. n-tuples of O's

and Ts) which map to the element I of Z2 are called O-cubes or ON-vertices. Two O-cubes are said to form a

1-cube if they differ in only one coordinate. Thus, the two O-cubes 101 and 111 form a l-cube represented as

Ixl, where x means that the entry in the second coordinate (also called a component) can be either a I or 0.

The O-cubes winch form a I-cube are called faces of the I-cube. The x indicates a free component, and the

others are called bound. The space of all O-cubes is denoted by K0. and the space of all 1-cubes is denoted by

K . Two I-cubes of K1 form a 2-cube if the free component is in the same coordinate for both I-cubes and if

exactly one bound component disagrees. The l-cubes which form a 2-cube are called opposite faces of the

2-cube. The space of all 2-cubes is denoted by K2. This process continues inductively to give Kr, the space of all
r-cubes, 0 < r < n.

The operations of obtaining the faces of an r-cube and obtaining an r+l-cube from Kr can be formalized as
follows:

Let (a,. a2, --. an | = cr be an r-cube, a, • 0, 1 or x, and there are r x's. Then we can find the faces of cr

with the /-//(face operator.

VK'V~'an)
^ai'—.ai_,.P.a.+ I,--,an)ifa. =x

0 if a. # x

where p = 0 or I, We can find a cube crt' with the i-th coface operator

(a••"••'ai-l'x'ai+i'--.an) = cr+, ifa.#Xandcr+,C K(0

i/a. = xor if c'*' (£ K(f).

The cubical complex of function f, A'(f) is defined as the collection K0, K1, --, Kr, --, K" and the face and

coface operators. A cubical complex is, therefore, an algebraic system made up of algebraic operations and
collections of cubes.

Based on the cubical complexes, some of the operations which are useful in obtaining prime implicants, and
essential prime implicants are discussed below.

4.2.i Star-Product (Consensus Operation)

The star-product of two cubes can be defined through the »-product of coordinates of the cubes. The
coordinate »-product is defined by Table 2.

-14-

* 0 1 x

0 0 v 0

1 v 1 1

\ 0 1 X

Table 2

Coordinate "-Product

Lei / = (a ■■ -i") and Cs - (P.. h,. --. b") be cubes of a complex K. To lown ibe »-product cr * cs

'"- m aj * b, fot l< i < n. It ., * ., = v tor more ,1,..,. one ,. c' * c^ = p. if ;1, mo,t one y appears then

cr *(- -(mfa, ' b,), m(a: * b). --. m(a * b)»,

wirere m(a * b) is
i i

in(()| = ().

m(1)= I.

mix) = in(\) = \.

Figure 3 gives several illustrations ol the »-product

c" =Olx
cd -c" *ch=xlx

e' = c« * e' = 0

c' =ch »c1 = IXX

C* =(ca* ^j* cc = | XX

c" ■c" *(cr *cc»=xlx

c* =ch *(ca *Cl)=0

OCX) 100

Illustrations for ♦-Product of Cubes

Figure 3

I
1
I
I
1
1
!

-15-

IIH- *-PMUIUCI c' * e* geometrically it rhe largest cube c' (a Kube) wind, has o^osite ((I yfnm in c' and c*
respectively, If the v.luc Df c' * c. IS $i ,.„ sudl c. ,XIN|V „,, ..p|()duc(((iiis ^ ^ ^^ of ^^ J

"ow cub. c which falls between cubes c' and c». o, which my incWe / or c«. Scvcl properties of the
••produci are lisieil In ibc following,

1 *■ c ■ c ' e commutaltve

- ^ "- - i ' (c " c i^c nonassocn 11IVC

3. II crCc\ihcii cr * c*" cr.

4. It c' * C« = ,' and c'Cc1. then ox' # 0. for some ,. some W # 0. some sa,uc-nce

of 8, operation m cr w,ll produce c'. mi mm sequtace a,p opmtlom on c'
produce cr

will

5, II cr' und cr2 m „ppuMie luces ut some cube c"1. then cr' * cr^ = if* ' = 6 (cr")

where i is ihe coordnuile in winch cr i and c'2 diiter.

4.2.2 Sharp Operation (—operation)

This operunon .s a sort ot sub.iaclion operalio,,. and wtf be described lor anv iwo cubes. Note lhal it we

form a«b, where a and b are cubes, we ob.am .he se, ot subcubes of a which is no, included in b. To g.vc an

algebraic defmmon we tirsl delme a coordinate ^-operation as given in Table 3.

I

Table 3

Coordinate #Operation a. # b.

Note that this operation is non-commulalive (that is. a # b # b # a I
i i i i''

'

-16-

To describe the Jr-operalion hetween two euhes, lei

r=(a .a,. --. ü) and c"1 = (b b,.-—. b).

L-r il a « b. = y for any i

0 il a « b = / for all i
U

i (a!. —-. 8, ., a,, 8.^.1 —-. an), where

8. #lJ, " & ■ 0 or I and lire union runs

over all such i.

lor example, xxx = I l>. = OxxUxOx

The tullnwiiig properties of the ^-operation follow immediately from the definition.

I • t - c - c it c I 1 c - p

1 .r ^ ,s /~ ,r
J. C = C v.. c .

3. cr = cs # cs = cr non-cornmutativc.

4. (cr « cs) « c1 # cr a (cs # c') non-associative.

The ^-operation can also be shown to satisfy the distributive laws:

5 (c' U LS» « f' = (cr « c*) U (cs # c'». and

(>. (cr H cs > ^ c1 = (cr » c') D (cs # c').

and also the following type of commutative law:

7. (cr «cs)#cl =(cr #e*)#^.

4.3 PRIME IMPLICANTS OF A BOOLEAN FUNCTION

A prime implicanl a of a Boolean function f is a product which has the following properties:

1 a implies f (i.e., a is an implicant of f)

2. If|3 is obtained by deleting any literal from a then/3 does not imply f.

In terms of cubit il complex, a cube z of a complex K is a prime implicanl of the complex K if there exists no

other cube in K wnich includes z.

-17-

üinnoMcCIuskey tabular method12' l3 and .leralivc consensus method1 K- l9 are the two most commonly

known methods of ohtaining the complete set of prime implicanls of the given function. These two methods

generally require large amounts of computation.

Since only an approximate minimum expression is to be obtained, a complete set of prime implicanls is not

required. Rather, prime implicanls of major concern are those obtainable through enlargement of certain cubes.

4J.I Quine-McCluskey Tabular Method

Tins method .s based pnncipally on the theorem XY + XY'= X. The «irsl step in this method is to transform

the expression (to be simplified) into the canonical sum form. The preceding theorem is then applied

exhaustively to obtain all irreducible terms, that is, terms to which the thc.rem cannot be further applied.

The theorem is applied first to all possible pairs of terms. Two terms to which the theorem can be applied

will reduce to one term with one less literal. For example, ABC + ABC = AB. Next, all terms reduced by one

literal are examined to see whether they can be combined turther. by the application of the theorem, into a term

with still fewer literals. This procedure is continued until no turther terms can be combined. The resulting

irreducible terms are called •'prime imphcants."

This procedure is more convemontly earned out with binary representations of product terms (called binary

terms» than with the algebraic expression itself. The first step is to construct a table by writing down binary

terms of the function. These binary terms are grouped according to the number of Ts contained, and the groups

are arranged consecutively in the order of increasing number of Ts. Arranging terms in this way, it is necessary

only to compare terms in one group w.th terms in an adjacent group (i.e.. the group containing terms with one

more 1) m order to apply the theorem XY + XY'= X. The terms that can be combined are "checked off

signitymg that they are not prime implicanls, and the new terms obtained through combination are written down

in a new table. When the companson between terms ot every two consecutive groups in the first table is finished,

unchecked terms are corresponding to prime implicants.

Terms in the new table are then compared lor further combinations. A •-" (indicating a missing literal) in a

term must match wuh a"-" in another term for them to be combined. New terms are arranged into a new table

again, and the process is repeated until no new table is created. At the end of the process, unchecked terms from

all tables correspond to all prime implicants of the function.

4.3.2 Iterative Consensus Method

To apply the iterative consensus method, the given Boolean expression must be in the sum-of-products form.

The theorem XY +X'Z= XY +X'Z+ YZ and X + XY = X form the basis for this method. Let P = xy y --y

and g = x /, V"7-,,- w,,L"rc " 's P'>**ible that y. = A for some i and j. The eomemm of P and Q (i.e., the star

product of cubes corresponding to P and 0), also written as P * Q, Is defined to be y y --y ?. z —z (with

any repeated literals removed) unless y. = z'.. m which case the consensus is said not to «d«. Qtttae1« showed

that successive additions of consensus terms to a sum-of-products expression and the removed of terms which are

included in the other terms (by X + XY = X) will result in a complete sum which is the sum of all prime
implicants.

-18-

Tins procedure can ulso ho implemanted as a tabular method using binary .ens. The method involves .he
foIlc'Wing steps:

!. Each term of the table is compared wi.h each term above i. in the .able.

2. If any .ern, is found to he included in another term, .he included term is removed
from the .able.

3. If any two terms have a consensus, the consensus term is compared wi.h all other

terms of the table and then added at the bottom of the .able if i. is no. included in
any other terms.

4. The process terminates when every term has been compared with all terms lower down

in the table. The terms which remain in the table correspond to all the prime
implicants.

4.3.3 Cube Enlargement Method

Although the Oume-McCluskey tabular method is straight forward and can be easily implemented, it assumes

the given expression to be in canonical sum form. When the canonical expression contains numerous terms the

size ol the table becomes inconveniently big, and the process becomes a ..me consuming computation The

tarative consensus method requires only that the expression is in sum-of-Produc.s form. Therefore, i. generally

has a smaller table to begin, but the process is more involved. Both methods calculate the whole set of prime

implicants. For a certain class of functions .he number of all prime implicants may be very big. For example

consider a function of 3k variables wi.h a cubical complex containing all cubes having exactly k coordinates

equal to 1. k coordinates equal to 0. and k coordinates equal to x. It is easy to see that each of these cubes

corresponds to a prime implican, of the function. Therefore, for .his special class of functions the number of
prime implicants is

/3kW2k\ (3k)!

\k/\k/ (k!)3

winch is 1680 for k - 3. Consequently for such functions both the Ouine-McCluskey tabular method and the
iterative consensus method are very inefficient.

Quite often it may not be necessary to obtain a minimum form, either if the minimization process becomes

tedious and time consuming or if the cost of the circuit is not of primary concern. Hence an algorithm of finding

an approximate minimum based on the cube enlargement is developed.

In the cube enlargement method, the given function must be expanded into a sum-of-produc.s form first as in

the iterative consensus method. The method will be described in terms of cubical complex, and don", cares will

be considered als... This method is a modification of Miller's Local Extraction Algorithm16

■19.

I
I
I
I
I
:

I
I
I
I
I

I.ci C0 be the set of all ON-cubes (correspondiJig to products in the expanded fomi), and K) be the cubical

complex of Co. Als,, lei Do be the set of all don'l care cubes (corresponding to products of the don't care
function), and N be the cubical complex of I)

The procedure involves the following steps:

1. All cubes of C0 are arranged in the order of increasing number of x in each cube.

2. Let cr = (Cj, c2, --. cn) be a cube of Co, and c. be the fust non-x component. Form

/ = (c,. cr --, c. ,. x. c.(, --. cn) and cr = (c,. cr --. c. ,, u. ,;.,,. .-. cj.

where a = 0 if c. = I and a = I if c. = 0, Then check to see if /. is in the cubical

complex k, = K^UN,. This can be done by using the ^-operation. Thus. cr #
,,('„ cr)/ ' &„) = Q («mpty), if and only if Z is in K,. If / is in K,. cr is replaced by

/ and the operation Is repealed on the next non-X coordinate of /. If z is not in K

we try the same operation on the next succeeding non-x coordinate of cr.

This process of expanding cr is continued until all non-x coordinates have been tested. The resultant cube is the

prime implicanl enlarged from cr. After applying the second step to each cr of („. the prime implicant cover C,

of K(is obtained. The number of prime impHcants obtained is less than or equal to the number of terms in till
original sum-of-products expression.

4.4 APPROXIMATE MINIMUM COVER

A minimum expression rs the sum of an irredundant set of prime implicants such that one of the minimality

criteria is satisfied. To find an absolute minimum expression, one has to find the whole sei of prime implicants

which rr. some cases is terribly big. To find an approximate minimum, we need only the set of prime implicants

obtairred by cube enlargement. The procedure of obtaining an approximate minimum cover from this, set of
, prime implicants is as follows:

Let C, be the set of prime implicants obtained by means of the cube enlargement method. We wish to find a

minimum cover which is a minimum subset of prime implicants in C, such that every vertex in K , is covered by
some prime implicants in the subset.

The first part is to find if any cube c of C, covers some vertex in K, which is not covered by any other cube
in C-!. A cube c is of this type if

c#Dn «((-, c)^0 t L'^ (4.4.1)

such a cube rs called a pscuJo essential prime impliean,. and it must be included in the approximate minimum

cover. The set of all pseudo essential prime implicants will be denoted by F

I he second part is to lind the approximate minimum cover by ileratively choosing cubes in C - F . In

selecting cubes from C, I,, bigger cubes with larger number of vertices not cover by F and D' are
I o

-20-

are
preferential. This is because a bigger cube has fewer literals, and vertices not covered by F and D

ON.vert,ces winch must be covered in the minimum ever. This preference in selection, can be accomplished by

ordering cubes in C, F, according to their cost factors. The cost factor of a cube q is defined as

where 2r is the number of vertices in cube q (r is the di

k is a weight.

^ = 2r + k • | u |

mension of cube q).

and
a I is the number of vertices in a, which is the set of q's vertices not covered by F, and D,, namely

a-q#Do#F1 (4.4.2)

To facilitate the selection, cubes in C, F, are arranged in the order of increasing cost factors. This list of

cubes is then followed by the list of cubes In D. and the list of cubes in F, to form a linear array as shown in
Figure 4.

Cubes of C. F. arranged downward

according to increasing cost factors.

Cubes of D

Pseudo essential prime implicants

(cubes of Fj).

Arrangement of Cubes for Obtaining an Approximate Minimum Cover

Figure 4
The selection algorithm is as follows.

1. Starting from the first cube in the array, each cube in the first list is ^operated by
every cube below it in the whole array.

2. Whenever an empty result is obtained in a chain of ^operations, the cube under

consideration is discarded and then pick up the cube immed.ately below it for
consideration.

3. If what results from the complete chain of operations is non-empty, we must select

the cube under consideration and move it to the bottom of the third list.

-21-

.

4. The process tormmales when (he last cube in (he first lis(has been considered fur
selection.

When the process stops, (he set of cubes In (he (bird list corresponds to (he approximate minimum cover.

The designer can choose a minimum cover with tewer li(erals or fewer terms by adjusting the weight k In

general. If a design with fewer (erms is preferred, a higher weight should be used. Conversely, if a design with

tewer literals (S preferred, a lower weigh(should be used. Weights of '/., I, and 2 are used in the implementation.

REMARK

Two chains of operations are carried out during the n,immiza(ion as implied by equations (4.4.1) and
(4.4.2). They are rewritten in (he following:

c#Do #<f'I c)-0 (44|)

^ # Do * P, * a (4.4.2)

where c is in Cj and q is in (' F

Since a cube in C, F, is als,, in C,, the computation of (q # D,) can be saved if (he-intermediate results

(C # Do)-s are stored durmg the computation of equation (4.4.1). In general, however, because c # D is not a
single cube, a large memory is required to Store all (c * D \'s

o

4.5 PROGRAM IMPLEMENTATION

Since the LINC is a binary computer, each bit can only represem either 0 or I. But a variable in a product

-my be true. not. or missing. Hence two memory words (or by(eS) are required to represent a product (i.e., a

cube). For example, in (he case of three variable functions, (he product AC'(i.e., 1x0) is represented by the two

binary words 100 and 010. In (he firs, word a I represent a I, while a 0 represents either a 0 or an x in the

binary representation of the product. In (he second word a I represents x, while a 0 represents either a I or a 0

The first word is denoted by N and (he second word by P in the How chart of (he minimization program given

in Appendix 7.2. This internal representation is called the N-P representation. As the first step of the

minimization procedure, product term is transformed into its N-P representation. After the minimum cover is

obtained, the N-P representation of each cube in the cover is transformed into a product term.

4.6 EXAMPLE

Consider the Boolean function F with Fc and Fd given as follows:

Fc(H>G,E,A,B,C,D) = H'AB'C'D' +H'E'A'BC'D' +H'G'E'A'BC'D' +

H'G'A'B'CD' +H'A'B'C'D' +G'E'ABD' + G'EBCD + H'G'E'BD +

H'G'A'BCD

Fd(H,G.E)A>B.C.D) = H'E'A'BC'D + H'GA'B'CD

■22-

IIK- prime implicants obtained through the cube enlargemenl are

ll'l A'BC'

iri 'A'('D'

H'A'B'D'

H'G'A'BCD

H'B'C'D'

G'E'ABD

G'EBCD

H'G'E'BD.

I lie approximate minimum cover obtained is

H'E'A'BC

H'A'B'D'

H'B'C'D'

G'E'ABD

G'EBCD

H'G'E'BD

where the lirsi live are pseudo essential prime implicants. The approximate minimum expression is then

H'E'A'BC +li'A'B'D' +H'B'C'D' + G'H'ABD + G'EBCD + H'G'E' BD.

4.7 CONCLUSION

Many Boolean expression minimization algorithms have been developed in the past, almost all of them are for

obtaining absolute minimum expressions. Due to the following reasons, however, il is sometimes not preferred to

obtain the absolute minimum expression.

1. I he computation is lime consuming and requires large computer memory.

2. The switching circuil realizing the absolute minimum expression is sometimes the most
unreliable circuit

3. Redundancy is sometimes added to increase reliability and check out capabilities.

Therefore, it is often more preferable to compute an approximate minimum expression than an absolute

minimum expression. For this reason, the algorithm for obtaining an approximate minimum expression is
developed.

I
I
I
I
I
I
I
!

I
I
I
I
I
I
I
r
i
i

I IK «e algorithm* presented in Sections 4.3J and 4.4 have hm, implemsnled on the IINC computer. These

algonthms. however, are uieful in any binary maehtne. In principle, there Is no limitation to the number of
variables ol a Boolean function.

■24-

5 COMPUTER EXPANSION OF BOOLEAN EXPRESSIONS

5.1 INTRODUCTION

In computer mimmi/aluui of Boolean expressions, it is generally assumed that Boolean expressions are given

in canonical form (i.e.. sunvof-mJnterms form), normal tonn (i.e.. sum-of-products form), or their equivalents.

Since in practice Boolean expressions as they are originally given are very often not in the assumed form, it is

necessary to preprocess them by expanding them into the assumed form. Although relatively easy and straight

forward, this process could he troublesome and become a source ol error if performed manually. Therefore, this

process is an essential step in the automation of Boolean expression minimization.

Minimization methods can be classified into two categories according to whether the canonical form expansion

is required ': ' or simply a normal form expansion is required1 s ,H. Generally the amount of compulation

and memory needed in the minimization process Is proportional to the number of terms in the expanded

expression. Iheretore methods of the second category are more suitable to computer processing where the

normal form expression obtained has considerably fewer terms than the canonical form expression has. This is

very often the case if the normal form expression is obtained by applying DeMorgan's theorems, associative laws,

and distributive laws. Accordingly the development of efficient computer algorithms to perform this normal form

expansion Is important.

Computer algorithms are presented in section S.2 for applying DeMorgan's theorems algebraically to any

Boolean expression containing "ANU," "OR," and "NOT- operators. The resulting expression can then be

expanded algebraically into a normal form expression by applying associative laws and distributive laws, using the

algorithm of section 5.3, Main features of these algorithms are:

1. Each algorithm is a one-pass algorithm.

2. Each algorithm Is syntax-oriented.

5 2 ALGORITHMS FOR APPLYING DEMORGAN S THEOREMS

Boolean expressions given are assumed to be In the most commonly used Infix form as defined In subsection

2.3.1. In this form, DeMorgan's theorems can be written as (X+Y)'= x ' y' and (XY)' = X' +Y'

Ihe Boolean expression Is scanned backward from the end (i.e., from right to left), and DeMorgan's theorems

are applied whenever applicable. Two different algorithms which perform this process are studied. They act as

syntax analyzers and transform the expression almost symbol by symbol in one pass. They are given in Backus

Normal Form20 with output Imbedded as shown in algorithms 1 and 2.

Algohr hm I:

<oxpicssion> : = <lerm>(+ ('•+") < ;enn> }

<teriii> :: = <3actor> {<t;icior>}

<factor> :: = <v;iiiüble> [the same variable]/

'<vuriable> |" '" ynd the same v;irialilc|

) l")"! <cxprossK)ii> (|"("|

') <C oxprossiim> (

<c OXPII'SMOII> : = ■(<singl« varlable> ' |")"| <c icriii> \"["\X

{+ \ <singl« wri8ble> / |")"| <c term> \V\})

<c ierm> <x factor >l

<c factor>

'+" it the currenl

(symbol is nol + or (

<variüble> | '*'" and the same variable)/

' <variabk> [the same variable]/

) <c expro88ion> (/

') <expression> (

<single variable>* " = <variable> ■(+ / (V

<c factor>l

"'" and the same |

- variable J

' <variable>-(+/()** (the same variable)

<variable> :: = A/B/C/ /Z

*A false return from the ^single variable> routine causes the input string pointer to move back to the place it has

upon entering this routine.

*A successful recognition of + or (at this point docs not cause advancement of the input string pointer. This is the

only exception to the general rule of advancing the input string pointer.

Several metalinguistic symbols are used here and in (he following algorithms. < > denotes a syntactic class

:: - means "is defined as." and / nas the meaning of "OR." j j denotes iteration, i.e.. zero or more concatenated

occurrences of the con.ents of ,he brackels.< >deno,es ordered alternation, i.e.. .he firs, alternation is taken firs.

■ t applicable, otherwise take .he second alternation, etc. | j deno.es symbols to be pu. ou. or actions to be

taken. In all algorithms, a successful recognition of a symbol causes advancement of the input s.ring pointer by
one symbol position (i.e., ge. nexl symbol).

When .his algorithm is applied to the input expression

((A+BK+D')' + C((A+B) 'D)'+ ((B+C)'D)'

the output expression is

(A'B'H ')D + C(A^B+D') + (B+C+D')

Redundant parenthesis pans in the input expression are acceptable, and they will appear in the output expression

also. Moreover, as shown in the thud term of the output expression, .he algorithm generates a type of redundant

parenthesis pair even If the input expression is free from redundant parentheses. This type of redundancy is

mevitable lor a unidirectionakcan one-pass algorithm. This is so because, as one might have noticed by

comparmg the last two terms of the input and output expressions, the algorithm would not know that there is

no other factor in the term when it scans the factor ((B+C)'D)'in the third term.

In cases where the generation of more redundant parenthesis pairs is tolerable, a slightly simpler algorithm

given as algorithm 2 m the following, can be used. When algorithm 2 is applied to the same input expression it
generates

((A')(B')+C')(D) + C((A+B>t-D')+((B+C)+D').

II is to be noticed .ha. .his algori.hm produces redundant parentheses around single variable factors. In fact .he

purpose ol having the syntactic class <single variable> in algorithm 1 is mainly to eliminate this kind of

redundant parentheses. Though redundant parenthesis pairs are harmless, they not only occupy memory but also

make the output expression look clumsy. When this process is followed by the algorithm for applying associative

laws and distributive laws to be discussed in the following section, all parentheses will be removed eventually

Excessive number of redundant parentheses, however, will decrease .he efficiency of .ha. algorithm greatly.

5.3 AN ALGORITHM FOR APPLYING ASSOCIATIVE LAWS AND DISTRIBUTIVE LAWS

Associative laws are

(X +Y) + Z = X + (Y + Z;=X +Y + Z,

a,ld (XY)Z = X(YZ) = XYZ.

I
I
I
I
I
I
I
!

•

-27-

1

I

I
I
I
I

Algorithm 2:

<expression> .: = <term> { + ("+"] <ierm> }

<term> :: = <factor> {<luctor>}

<factor> :: ■ <variable> (the same variable) /

' <v1'.riable> ["'" and the same variable) /

/ [")"] <c expressii)n> (|"(") /

) |")'") <expression> (]"("]

<c expiession> :: = <c term> { +)"(",")") <c term>}

<c lerm> :: = <c l'aclor> {]"+") <c fact()r>}

<c faclor> :: = <variable> ["'" and the same variable) /

' <variable> jthe same variable] /

') [")") <expression> ()"(") /

))*')") <c expression> (("("]

<variable> :: = A/B/C/D/ /Z

-28-

Distributive laws are

and

.\(Y + Z) • XY + XZ.

(X + Y)Z = XZ + YZ.

(X + YMX + Z) = X + YZ.

The expression obtained from applying any algoritlini of the previous section is the one to be processed by this

algorithm. The expression is scanned unidirectionally from the beginning (i.e.. from left to right) in me pass, and

one of these laws is applied whenever applicable. The algorithm, given as algorithm 3, analyzes fid syntax and

processes the expression with the aid of a pushdown stack (called the primary stack) of component stacks (called

secondary stacks). The stack structure is shown in Figure 5. and the algorithm is again given in Backus Normal

Form with actions imbedded. A cell of the primary stack stores a secondary stack pointer, while a cell of a

secondary stack stores an item.

Algorithm .1:

<expression> ::=<term> (output operation)

{+ |"+,,| <term> |output operation)}

<term> :: = <factor>)pushdown the primary stack)

l<factor> operation

I. pushdown the primary stack, if

_ the current symbol is not) _

<factor> :: = <primitive> / (<p expression>)

<primitive> :: = ■(<variable> / <variable> ')■

aiiable> / <variable> '

<p expression> :: = <term> / + <term>

<variable> :: = A/B/C/ /Z

store the primi
tive as an item
to the top

secondary stack

1. + operation
2. pushdown the primary

stack, if the current
symbol is +

..

-29-

O
T3

O o

o ^ ♦-

1

1

Ü
o
(A

o
■o c
o
o
0)
(A

|
in
tu

t«

' ,

• ■

-30-

-C/>

V)

00
< o -</>

m

c/)

o <jy

0 i
n

% B
O

+ 2
"j Q. c
M 8 0 •
9P •

1-

u
CL

2 ■3 0

•
3 Ü

<u
•■■ E M
HI w
2

| —

0
es "1 1

0
D.

vO •a +

s 1 U
t-

uu
V) 41
C

«1
00 c <

1
mk ■3 2
O
u

^u, I
0

^ Ou
o c 8 O rs n <u

♦^

lM
to ♦-

o , 0 (ta
c a. 0 (A 0
w
RS

0

+ »N

■ I
0 1
• S

vO e £
K ♦^

< <

3> •0 ^^
u. is s S

I
I
I
I
I
I
I
I
1
I
I
I

I
I
I
I
I
I
r

•31-

(/5

-(/>

CM
CO

O GO CD O </>

X!
ST

3
Op

-32-

<fi

CO UJ ■CO-

CM
CO

CO UJ ■c/>

o

>»
k.
O 0)
o o>
Q. a
E o a> +-
♦- </)

o

..

if)

<n-

o as
is.
LÜ
CD
<

</>•
T3

u
3
SO

-34-

. .

Q ■co-

i i

O ■<n-

CM

E

o
OS

c

■_)
0
a.

CO ■<^-

>, c
0

^j VJ
V)

OJ 1 a,
X X
h- u

3
00

I

I

I

I

i

i

«»

it

-35-

■U>

O •</>

CO •</>

op
üü

I
I
I

-36-

u>

■37-

..

.

Hie outpul operation prints out each item in the top non-empty secondary slack as a product term with a +

sign between every two terms, in cases where the cubical ever corresponding to a normal lorn, expression is to

be obtained directly, the output uperatioAis for transformation of these Hems into their cubical

representations and stores them away. The J^paaMon and ,I|C * 0peratjün ,„,„, ()peril|c on the |()p two

non-empty secondary slacks. Let the top noh-empiy secondary slack and the one immediately below it be

denoted by S, and S, respectively. The + operation transfers all items in S, lo S,, clears S, by moving its

pointer to the bottom, and then moves (he primary slack pointer to S2. The ♦ operation'consists of the
following two steps:

I Delete items common to S, and S,, and record these items in a temporary storage.

- Distribute each remaining item in S, to all remaining items in S.,, transfer all items in

the temporary storage to SJt clear S, by moving its pointer to the bottom, and then

move the primary slack pointer to S,. In the distribution process, the multiplicative

complementarity law (XX ' = 0) and the multiplicative idempotence low (XX = X) can

be applied.

Thus, if the stack contents and pointers at some stage of the process are as shown in Figure 6(a). then they

become as shown in figure 6(b) alter the + operation. After step I and step 2 of the * operation, they will be as

shown in Figure 6(c) and Figure (i(d) respectively.

To help in understanding tins algorithm some key steps in the process of applying it to the

expression((A+B)(C+D)E+F)G will be explained. After Ü is recognized as a variable, the input string pointer

moves to the next symbol, and D is stored as an item in the top secondary stack. At this stage the stack

contents and pointers are shown in figure 7(a). After D is recognized as a term and the + operation performed,

they become as shown in figure 7(b). Since the symbol pointed by the input string pointer at this time is), it

recognized C+D as a p expression and (C+D) as a factor. The * operation is then performed, and the stack

contents and pointers become as shown in Figure 7(c).

5.4 PROGRAM IMPLEMENTATION

The How chart of the Boolean expression expansion program is shown in Appendix 7.3.

5.5 CONCLUSION

Three computer algorithms have been presented; two for applying DeMorgan's theorems and the other for

applying associative laws and distributive laws. By using these algorithms any well-formed Boolean expression

containing "AND." "OR," and "NOT" operations can be expanded into its normal form in two passes. These

recursive algorithms may not be most efficient to achieve their goals, yet they are easy lo understand because

they are syntax-oriented. They have been programmed and tested on the LINC, and the whole program occupies

less than a thousand 12-bil words of memory.

:

•38-

Symbol mumpulution Imrguages such as SNOBOL21 and FORMAC»2 can be used to program the expansion

ol ., Boolean expression with relative ease. Aside from the necessity of a big machine to run a general symbol

manipulation language, however, special-purpose algorithms such as these are undoubtedly much more efncient.

»

. /

i
: ■ ■

.39-

i
I
I
I

6. CONCLUSION

A soi of cumputer oriented algorithms useful in logic design automation has been developed. These algorithms

are programmed on the I INC compute! as ,, set of seven routines. The routines can be used independently or

l »intly, Figure 8 explains how (he routines can bo linked togethei to form a computer aided logic design sysie

In the figure, each oval box represents a routine while each rectangular box indicates the form by which

boolean function is represented, Hie double-lined arrows indicate entry points, The system can be entered li

lom different entry points.

in principle, the application of these algorithms is not limited by the number of variables. During the

development, particulai attention has been paid to generality, modularity, and machine independence.

Some possible future extensions of tins research are:

m

om

Solution of Boolean equations using designation numbers.

2. Detection of functional equivalence resulting from complementation

of variables.

m m

■

3. Analysis and synthesis of sequential circuits.

-40-

entry

©^

entry

i
cxprewions

I
functional

composition

I
designation
number
computation

designation
number
(truth table)

I
functional
relation

computation

relation

designation
number
to terms

transformat'otv

1
eiilrv 2

JL.

expression

Boolean

expression

expansion

terms

term to N-P

transformation

cubes

cube
enlargement
and minimum

cover

minimization-»!

prime implicants
(cubes)

expression or

binary

M printing)

N-P to term
transforniation

A Computer Aided Logic Design System

Figure 8

■■

• .

41-

7. APPENDICES

.

■42-

APPENDIX 7.1

The Flow Charl For Transforming a Boolean Expression into

the Harly Reverse Polish Form

©

o

GETS

No

V =0 RP = 0 4

Yes
CS —»OS

Yes
XY=1020

Yes
XY=082I

Yes
XY=0422

RP=0

RP=

Stack
routine

-** V=0

I
I
I
I
I
I
I

A3-

i

I

i

I
I
I
I
I
1

XY-1264
for "."

Stuck
routine

XY=0666
for "("
E=XY

©

44-

Yes

No
—

warii hlP

CS —► OS

' '

GETS

-45-

Stack routine

store return
address

Yes

i i

Yes
E = XY

' .Yes > j
return ueiet« 1." 1

Notati

CS: Current input symbol

V: Variable flag (set to I when CS is a variable and reset to 0 when CS is), +, or ©)

RP: Right parenthesis flag (set to 1 when CS is a right parenthesis, and reset to 0 when CS is +

or ©)

OS: Output string

tOL: End of the expression

XY: Y and X denote an operator and its hierarchy number respectively

E: Top element of the push-down list N

H(E); The hierarchy number of E

■46-

APPEND1X 7.2

The Flow Chart for Boolean Expression Minimization

Tube Enlargement

Term to N-P transformation fur each cube
of the expression to form C

NVF = number of variables of the
function

I
Count number of cubes in C and

denote it by NOCC

Count dim for each cube in C .
<>

dim = number of I's in the P-word of

a cube

Arrange all the cubes in C according

to increasing number of their dim's

Set NOCT=0

©

I
I
I
I
I
I
I

■47-

i

I

I

I
I

NOCT: No. of cubes tested

NCT: No. of components

tested

Obtain cr

' '

Obtain z

T
©

-48-

©

NCT» NCT+1

©

Yes

Copy the N-P words of / to the
N-word and P-word respectively

No

Yes

A prime implicanl is obtained
store away N-word. P-word

Ma, >©

Yes
1 '

If c1 = d , c> is deleted

c1. c are prime implicants.

The set of prime implicants is

denoted by (?!.

1
(sy

-©

49-

2. Approximate Mininium (over

■

The number of cubes in ('
is denoted by NOCC

1
NOCT-0
NPPI=0

NPPI: Number of pseudo
prime implicants

•■

'I
Ciel a new cube from C

i
NOCT=NOCT+l

Cube c is a pseudo prime

implicant then store ;t away

——————————

■50-

©

Denote the set of pseudo prime
implicants obtained by F

Obtain cubes in (C f;)
NC2=tlie no, of these cubes-

-r-

NOC"T-0, assigti a value to k

EEC
J

Ciet a new cube q from (f F)

NOCT=NOCT+l

Perform the operation
q#D0 #F| =«

Calculate | a | = number
of vertices in u

Calculate the cost factor for cube q
0 = 2r + k • | a

I -51-

I

I

I

i

[

I

I
I
I
I
I

©

Arrange cubes in (C, F,), Do and F| into

a linear array as shown in Figure 4

NOCT-0

Ge(a new cube q from the first list

NOCT-NOCT+1

Cube (| is # operated with each
cube below it in the linear array

Move cube q to the bottom
of the linear array

The cubes contained from Fj to the
Bottom of the linear array corresponds to

the approximate minimum cover

(end)

-52-

.

APPENDIX 7.3

The Flow (-hurt for Boolean Expression Kxpansion

Applying DeMorgan's Theorems

.

■

-53-

0

©

PS
l <c expression> j

I "" 1
I go to i
I <single variable^ .
•"---r '

-54-

. .

. -r.r

I
I
I
I
I
I

-55-

|

f

©

I

-56-
.

V <s!nglc variable>/

s —• tenip2

Yes

CS —► lempl

I
GETS

No

OS

Uinpl —^OS

Yes

c;tTS

CS » tempi

GETS

temp2 —* s.

■57-

Nututions

l-.ül : Tertnlnating symbol of a Boolean expression

(ll:TS: Rcid next input symbol

s.: Pointer points to the input symbol under examination

CS: The current symbol

+ "OR" operator

': "NOT" operator

V: A variable of the Boolean expression

tempi: \ temporary storage

Remark

In this How chart, an oval box indicates the entr> ol a syntactic class, and doilmed rectaii|ulai box indicates

the exii from one syntactic class to another syntactic class, A push-down store is sei up to store return addresses.

The top emi> ol the push-down store is always the successful return address, while the next to the lop entry is

always the false return address.

-58-

2. Applying Associative and Distributive Laws

0

Kg* ; ,.
■ ■

I
I
I
I
I
I
I

1
I
I

-59-

0

(1
! go to I
! <term> '
L r 1

©
search for

si

PTR=BAD of s.

E=content of PTR

©

PTR=PTR+1

I
Yes

©

©

I <terni> J

--* —n
go to ,

<factor> *

TAD of s. =BAD of s

T
©

0
get a new

secondary stac k

r -
l go to i

' <factor> J

*©

operation

Yes

get a new
secondary stac k

-60-

■

-61-

.

®

I <p expressic)n>y
©

I
' go to
{_ <term>

©• J
-I

elements in s1 are

transcribed one by one

to the top of s.

©

©

find s,, s2

I
get BAD of s,

and TAD of s.

T

BAD: Bottom address of a secondary stack

TAD: Top address of a secondary stack

PTR: Secondary stack pointer

find: nnd=l indicates a primitive is found

-62-

8. BIBLIOGRAPHY

1. Breuer, M.A., "General Survey of Design Automation of Digital Computers," Proceedings of the IEEE,

Special Issue on Coinputers, (1708-1721), December 1966.

2. Dammkoehler, R.A., A Macromodular Systems Simulator, Technical Report No. 4, (371-376), Computer

Systems Laboratory, Washington University, St. Louis, Mo., June 1967.

3. Ball, W.E., A Macromodular Meta Machine, Technical Report No. 4, (377-392), Computer Systems

Laboratory, Washington University, St. Louis, Mo., June 1967.

4. Bashkow, T.R., and Kanon, A., "A Programming System for Detection and Diagnosis of Machine

Malfunctions," IEEE Transactions on Electronic Computers, Vol. EC-12, (10-17), February 1963.

5. Case, P.W., et al., "Solid Logic Design Automation," IBM Journal, Vol. 8, No. 2, (127-140), April 1964.

6. Roth, J.P., "Systematic Design of Automata," AFIPS Conference Proceedings, F.J.C.C. 196^, Vol. 27,

Part 1, (1093-1100), Spartan Books, WAshington, D.C.

7. Schneider, P.R, and Dietmeyer, D.L., "A Subroutine Set for Automation of Logic Circuit Design,"

Proceedings of the COMMON Anniversary Meetings, New Orleans, Louisiana, November 1968.

8. Ledley, R.S., Digital Computer and Control Engineering, McGraw-Hill Book Company, New York,

(320-427), 1960.

9. Hamblin, C.L., "Translation to and from Polish Notation," Computer Journal, (210-213), October 1962.

10. Cardwell, S.H., Switching Circuits and Logical Design, John Wiley & Sons, New York, (158-162), 1967.

11. Harada, K., A Method Listing All Possible Permutations by Referring Hamiltonian Paths, Technical

Memorandum No. 92, Computer Systems Laboratory, Washington University, St. Louis, Mo., January
1970.

12. Quine, W.V., "The Problem of Simplifying Truth Functions," Am. Math. Monthly, Vol. 59. (521-531),
October 1952.

13. McCluskey, E.J. Jr., Minimization of Boolean Functions, Bell Systems Tech. J., Vol. 35, (1417-1444),
November 1956.

14. Karnaugh, M., "The Map Method for Synthesis of Combinational Logic Circuits," Comma, and

Electronics, Trans. AIEE, Part I, Vol. 72, November 1953.

i
I
I

-63-

15- Roth, J.P., "Combinational Topological Methods in the Synthesis of Switching Circuits,"/Vw. Intern

Symp. on the Theory of Switching, Harvard University, Cambridge, Mass., April 1957.

16. Miller, R.E., Switching Theory, Vol. 1: Combination Circuits, John Wiley & Sons, Chapter 3, 1965.

17. Gazale, M.J., Irredundant Disjunction and Conjunctive Forms of a Boolean Function. IBM J. Research
. and Develop., Vol. 1, (171-176), April 1957.

18. Mott, T.H., "Determination of the Irredundant Normal Forms of a Truth Function by Iterated

Consensus of the Prime Implicants," IRE Trans, on Electronic Computers., Vol. EC-9 (245-252) June
1 1960.

19. Quine, W.V., "A Way to Simplify Truth Functions," Am. Math. Monthly, Vol. 62, No. 9, (627-631),
November 1955.

20. Naur, P., et al., "Revised Report on the Algorithmic Language ALGOL 60," Comm. ACM, Vol. 6,
(1-17), January 1963.

I

i
I
I
I
[

I
I

21. Farber, DJ., et al., "SNOBOL: A String Manipulation Language," J. ACM, Vol. 11, (21-30) January
1964.

22. Tobey, R.G., Bobrow. R.J., and Zilles, S.N.. "Automatic Simplification in FORMAC," Proceedings -
F.J.C.C. 1965, (37-53).

